Van der Sluys, W. G., Berg, J. M., Barnhart, D. \& Sauer, N. N. (1993). Inorg. Chim. Acta, 204, 251-256.
Van der Sluys, W. G., Huffman, J. C., Ehler, D. S. \& Sauer, N. N. (1992). Inorg. Chem. 31, 1316-1318.

Acta Cryst. (1999). C55, 1278-1280

Poly[[[aqua(2,2'-bipyridine- N, N^{\prime})cad-mium(II)]- μ_{3}-sulfito- $\left.O: O: O^{\prime}\right]$ hydrate]

Miguel Harvey, ${ }^{a}$ Sergio Baggio, ${ }^{b}$ Ricardo Baggio ${ }^{c}$ and Helena Pardo ${ }^{d}$
${ }^{a}$ Universidad Nacional de la Patagonia, Sede Trelew, 9100 Trelew, and CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, ${ }^{\text {b }}$ Universidad Nacional de la Patagonia, Sede Puerto Madryn, and CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, ${ }^{\text {c Departamento de Física, }}$ Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, and ${ }^{d}$ Laboratorio de Cristalografia y Química del Estado Sólido, Facultad de Química, Universidad de la República, Montevideo, Uruguay. E-mail: baggio@cnea. gov.ar

(Received 15 December 1998; accepted 14 April 1999)

Abstract

The title compound, $\left\{\left[\mathrm{Cd}\left(\mathrm{SO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\right.$-$\left.\mathrm{H}_{2} \mathrm{O}\right\}_{n}$, consists of ladder-type chains formed by distorted $\mathrm{CdN}_{2} \mathrm{O}_{4}$ octahedra replicated by two different types of embedded symmetry centres. The sulfite anion displays a regular geometry and coordinates through two O atoms, the third O atom only being involved in hydrogen bonding.

Comment

The sulfite ion has been extensively studied as a component of many coordination compounds [34 entries in the 1998 version of the Cambridge Structural Database (CSD; Allen \& Kennard, 1993)]. As demonstrated therein, the anion is able to adopt different modes of coordination depending on the characteristics of the metal present, due to its being composed both of soft (S) and hard (O) bases, according to Pearson's classification (Pearson, 1973).

However, and in spite of the great number of sulfitecontaining organometallic compounds described in the literature, not a single crystallographic study has been reported on sulfite-cadmium complexes, the only structurally related studies being those performed on cadmium sulfite salts by Kiers \& Vos (1978) and Engelen et al. (1987). Pursuant of our interest in cadmium sul-
fur oxoanion complexes, we report herein the crystal structure of the title compound, (I).

(I)

The cadmium ion interacts with the bidentate bipyridine, three symmetry-related sulfite groups and a coordination water molecule, all of which provide a heavily distorted octahedral environment, with $\mathrm{N} 1, \mathrm{~N} 2$, O^{ii} and O 1 W occupying the equatorial positions, and O 3 and Ol^{1} occupying the apical sites [symmetry codes: (i) $x, y, z-1$; (ii) $1-x,-y, 1-z$] (Fig. 1). The degree of deformation achieved by the polyhedron can be assessed by the maximum deviations from ideal geometry: N1 deviates by 0.111 (2) \AA from the equatorial plane and $\mathrm{Cd}-\mathrm{Ol}^{\mathrm{i}}$ is $17.6(1)^{\circ}$ from the normal to the plane. Even the (in principle equivalent) $\mathrm{Cd}-\mathrm{N}$ bonds display a striking difference of $c a 5 \%$ in length as a result of the overall strain developed. A search in the CSD showed this difference to be in the upper 20% of the distribution for ca 3000 cases explored.

Fig. 1. Molecular diagram showing the numbering scheme used, as well as details of the cation coordination environment and some interchain hydrogen-bonding interactions. Displacement ellipsoids are drawn at the 50% probability level.

The anion shows an interesting mode of coordination that differs both from those reported for the related cadmium salts (in which all three O atoms are engaged in covalent bonding), as well as from those in other metal complexes (where it shows a slight preference for coordination through sulfur). In the present complex, the anion makes use of only two O atoms to coordinate cadmium, namely Ol and O3, the latter being in an unprecedented bridging mode between two metal atoms (see below).

The overall geometry of the SO_{3} group is quite regular, with only a slight lengthening of $c a 1.3 \%$ in the sulfur-oxygen bond involving the bridging O 3 atom, compared with the almost equivalent distances for the other two. Compared with the dimensions of the free ion (Larsson \& Kierkegaard, 1969), a slight lengthening of the mean $\mathrm{S}-\mathrm{O}$ distance is observed, which is in accordance with the arguments of Kierkegaard et al. (1972).

The bipyridine anion does not present any unusual features; both cycles are planar within experimental error and their rotation around the C5-C6 bond is small [3.3(1) ${ }^{\circ}$].

The cation coordination polyhedra connect to each other through two different types of loops or 'links' arising around the two independent symmetry centres present in the structure (Fig. 2). Both sorts of loops connecting neighbouring cadmium ions are of the type $\mathrm{Cdl}-X-\mathrm{Cdl}^{\prime}-X^{\prime}$, i.e. a smaller one (four members), where $X=\mathrm{O} 3$ and which gives rise to the closest Cd \cdots Cd approach of 3.781 (1) \AA, and a larger one (eight members), with $X=\mathrm{O} 1-\mathrm{S} 1-\mathrm{O}$. The result is the formation of ladder-type chains evolving parallel to the c axis, the cohesion of which is helped by an 'interchain' link of strong hydrogen bonds [$\mathrm{O} 2 \cdots \mathrm{H} 1 W B-$

Fig. 2. Packing diagram showing the two different types of closed links building up around the symmetry centres, which give rise to the chains evolving along \mathbf{c}.
$\mathrm{O} 1 W — \mathrm{H} 1 W A \cdots \mathrm{O} 2 W — \mathrm{H} 2 W B \cdots \mathrm{O} 2(2-x,-y, 1-z)]$. The non-coordinated water molecule $(\mathrm{O} 2 W$) is engaged in a second type of hydrogen bond [O2W$\mathrm{H} 2 W A \cdots \mathrm{O} 2(x, y, z-1)$], connecting chains together in the a direction and thus defining bidimensional structures parallel to (010), with the planar bipyridine groups protruding outwards, similar to the teeth in a gear. This enables an 'interlocking' approach between neighbouring layers along the b direction, the main interaction being of the van der Waals type.

Experimental

The title compound was obtained by diffusion of a water solution of cadmium acetate dihydrate into a water-methanol solution of $2,2^{\prime}$-dipyridyl and sodium sulfite, all the reagents being in equimolar quantities. The original solutions remained separated due to their different densities. When contact was established, very fine and long needles began to develop immediately at the interface. After two weeks, a few crystals suitable for X-ray diffraction were obtained.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{SO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot-$

$$
\mathrm{H}_{2} \mathrm{O}
$$

$M_{r}=384.68$
Monoclinic
$P 2_{1} / c$
$a=10.036(2) \AA$
$b=18.669$ (4) \AA
$c=6.7170(13) \AA$
$\beta=98.62(3)^{\circ}$
$V=1244.3(4) \AA^{3}$
$Z=4$
$D_{x}=2.053 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7S diffractom-
eter
$\omega / 2 \theta$ scans

Absorption correction: ψ scan (Molecular
Structure Corporation, 1988)
$T_{\text {min }}=0.52, T_{\text {max }}=0.68$
3094 measured reflections 2856 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30
reflections
$\theta=7.5-15.0^{\circ}$
$\mu=1.94 \mathrm{~mm}^{-1}$
$T=293$ (2) K

Needle

$0.48 \times 0.22 \times 0.20 \mathrm{~mm}$ Colourless

2408 reflections with

$$
\begin{aligned}
& I>2 \sigma(I) \\
& R_{\mathrm{int}}=0.036 \\
& \theta_{\max }=27.48^{\circ} \\
& h=-13 \rightarrow 12 \\
& k=-24 \rightarrow 0 \\
& l=0 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \text { intensity decay: }<3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.075$
$S=0.986$
2856 reflections
189 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.036 P)^{2}\right. \\
& +0.436 P \text {] } \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.01 \\
& \Delta \rho_{\text {max }}=0.94 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.84 \mathrm{e}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

Cdi-OI ${ }^{\text {i }}$	2.272 (2)	Cd 1 - N 1	2.442 (2)
$\mathrm{Cd1}-\mathrm{O}^{\text {ii }}$	2.307 (2)	S1-O1	1.521 (2)
Cd1-O1W	2.335 (2)	$\mathrm{S} 1-02$	1.525 (2)
$\mathrm{Cd} 1-\mathrm{N} 2$	2.338 (2)	S1-03	1.543 (2)
$\mathrm{Cd} 1-\mathrm{O} 3$	2.413 (2)		
$\mathrm{Ol}^{\text {i }}-\mathrm{Cdl}-\mathrm{O}^{\text {ii }}$	110.50 (8)	$\mathrm{N} 2-\mathrm{Cdl}-\mathrm{O} 3$	92.47 (8)
$\mathrm{Ol}^{\text {i}}-\mathrm{Cdl}-\mathrm{OlW}$	82.18 (9)	$\mathrm{Ol}{ }^{\text {- }}$ - $\mathrm{Cd1}-\mathrm{N} 1$	88.73 (9)
O3iil-Cdl-O1W	90.70 (8)	$\mathrm{O3}^{\text {ii }}-\mathrm{Cdl}-\mathrm{Nl}$	160.52 (8)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Cdl}-\mathrm{N} 2$	104.24 (9)	$\mathrm{OlW}-\mathrm{Cdl}-\mathrm{N} 1$	88.85 (8)
$\mathrm{O}^{3 \mathrm{ii}}-\mathrm{CdI}-\mathrm{N} 2$	107.52 (8)	$\mathrm{N} 2-\mathrm{Cd1}-\mathrm{N} 1$	68.99 (8)
$\mathrm{OlW}-\mathrm{Cd} 1-\mathrm{N} 2$	156.50 (8)	$\mathrm{O} 3-\mathrm{Cd1}-\mathrm{N} 1$	87.32 (8)
$\mathrm{Ol}^{\text {i }}-\mathrm{Cdl}-\mathrm{O} 3$	160.14 (8)	$\mathrm{O} 1-\mathrm{Sl}-\mathrm{O}_{2}$	105.08 (14)
$\mathrm{O}^{\text {3ii] }}$ - $\mathrm{Cdl}-\mathrm{O} 3$	73.54 (8)	$\mathrm{Ol}-\mathrm{Sl}-\mathrm{O} 3$	101.13(13)
O1W-Cdl-03	78.29 (8)	O2--S1-03	105.87 (12)

Symmetry codes: (i) $x, y, z-1$; (ii) $1-x,-y, 1-z$.

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H...A	D-H	H. . A	D. . A	D-H. . A
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2$	0.83 (3)	1.93 (3)	2.729 (3)	162 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2 \mathrm{~W}$	0.85 (4)	1.93 (4)	2.761 (4)	166 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 2^{1}$	0.87 (4)	1.94 (4)	2.811 (3)	172 (4)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA} \cdots \mathrm{O} 2^{\text {ii }}$	0.88 (4)	2.12 (4)	2.995 (4)	177 (3)

Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $x, y, z-1$.
Non-H atoms were refined anisotropically on F^{2}. Those H atoms which were unequivocally defined by the stereochemistry were placed at their calculated positions, riding on their host atoms ($\mathrm{C}-\mathrm{H} 0.96 \AA$). Those corresponding to water molecules were found in successive ΔF syntheses and refined with restrained $\mathrm{O}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}$ values.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: MSC/AFC Diffractometer Control Software. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994). Software used to prepare material for publication: PARST (Nardelli, 1983) and CSD (Allen \& Kennard, 1993).

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge license to the CSD system.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1460). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Engelen, B., Buchmeier, W. \& Lutz, H. D. (1987). Z. Naturforsch. Teil B, 42, 37-41.
Kierkegaard, P., Larsson, L. O. \& Nyberg, B. (1972). Acta Chem. Scand. 26, 218-224.
Kiers, C. Th. \& Vos, A. (1978). Cryst. Struct. Commun. 7, 399-403.
Larsson, L. O. \& Kierkegaard. P. (1969). Acta Chem. Scand. 23, 2253-2260.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.

Pearson, G. R. (1973). In Hard and Soft Acids and Bases. Stroudsburg, Pennsylvania: Dowden, Hutchinson \& Ross.
Sheldrick, G. M. (1994). SHELXTLIPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1280-1282

Aqua[4-(4-chlorophenyl)-2-phenylthiazole-5-acetato-O]trimethyltin(IV)

Masood Parvez, ${ }^{a}$ Saqib Ali, ${ }^{b}$ Muhammad Mazhar, ${ }^{b}$
M. Hussain Bhatti ${ }^{b}$ and M. Nawaz Khokhar ${ }^{b}$
${ }^{\text {a }}$ Department of Chemistry, The University of Calgary, 2500
University Drive NW, Calgary, Alberta, Canada T2N 1N4, and ${ }^{b}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan. E-mail: parvez@ucalgary.ca

(Received 22 March 1999; accepted 9 April 1999)

Abstract

The crystal structure of the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\right.$ $\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClNO}_{2} \mathrm{~S}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$], contains hydrogen-bonded infinite planes, wherein each trimethyltin moiety is coordinated to a water molecule and an O atom of the carboxylate ligand. The Sn atom has a distorted trigonal-bipyramidal geometry with three methyl groups in the equatorial plane [mean $\mathrm{Sn}-\mathrm{C} 2.114$ (7) A]. The O atoms bonded to the Sn atom in the axial positions have significantly different $\mathrm{Sn}-\mathrm{O}$ bond lengths [2.167(4) and 2.490 (4) \AA].

Comment

The structural chemistry of organotin carboxylic acid esters has been extensively explored in recent years because of the rich diversity of structural motifs in the series (Tiekink, 1994). Only a handful of structures have been cited in the literature (Cambridge Structural Database; Allen et al., 1983) in which Sn atoms are bonded to three organic groups defining the trigonal plane and the axial positions are occupied by O atoms of a carboxylate ligand and a coordinated water molecule. In a continuation of our work on the structural chemistry of organotin carboxylates (Danish, Ali, Mazhar, Badshah, Masood \& Tiekink, 1995; Danish, Ali, Mazhar, Badshah \& Tiekink, 1995; Danish et al., 1996; Parvez et al., 1997; Tahir, Ülkü, Danish et al., 1997; Tahir, Ülkü, Ali et al., 1997; Bhatti et al., 1999), we now report the crystal structure of aqua[4-(4-chlorophenyl)-2-phenylthiazole-5-acetato- O]trimethyltin(IV), (I).

